Adaptive Bearings Vibration Modelling for Diagnosis

نویسندگان

  • Ryszard A. Makowski
  • Radoslaw Zimroz
چکیده

An adaptive algorithm for vibration signal modeling is proposed in the paper. The aim of the signal processing is to detect the impact signals (shocks) related to damages in rolling element bearings (REB). Damage in the REB may result in cyclic impulsive disturbance in the signal, however they are usually completely masked by the noise. Moreover, impulses may have amplitudes that vary in time due to changes transmission path, load and properties of the noise. Thus, the solution should be an adaptive one. The proposed approach is based on the normalized exact least-square time-variant lattice filter (adaptive Schur filter). It is characterized by an extremely fast start-up performance, an excellent convergence behavior, and a fast parameter tracking capability and make this approach interesting. The method is well-adapted for analysis of the non-stationary time-series, so it seems to be very promising for diagnostics of machines working in time varying load/speed conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

Improvement of Adaptive GAs and Back Propagation ANNs Performance in Condition Diagnosis of Multiple Bearing System Using Grey Relational Analysis

Condition diagnosis of multiple bearings system is one of the requirements in industry field, because bearings are used in many equipment and their failure can result in total breakdown. Conditions of bearings commonly are reflected by vibration signals data. In multiple bearing condition diagnosis, it will involve many types of vibration signals data; thus, consequently, it will involve many f...

متن کامل

Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm

Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...

متن کامل

Application of Artificial Neural Network in the Investigation of Bearing Defects

Maintenance and design engineers have great concern for the functioning of rotating machineries due to the vibration phenomenon. Improper functioning in rotating machinery originates from the damage to rolling element bearings. The status of rolling element bearings require advanced technologies to monitor their health status efficiently and effectively. Avoiding vibration during machine runnin...

متن کامل

Adaptive Designs in Vibration Control

This paper aims to introduce two new adaptive designs of vibration control systems. First is an absorber and the second is an isolator. Absorbers are used for suppressing unwanted vibrations, while isolators isolating them. Structural parameter changes and excitation directions significantly affect the behavior of the conventional passive controllers. A Tuned Stiffness Damper (TSD), stepper mot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011